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1 MATHEMATICAL MODELLING & DIRECTION FIELD

1 Mathematical modelling & direction field

1.1 How to solve

In order to provide a mathematical model describing physical phenomena, we can follow
the following steps:

1. Fix our dependent and independent variables and set a frame of references for their
measures

2. Choose convenient units of measurements
3. Find the underlying principle governing the motion of the object
4. Rewrite the above relation in terms of the variable we have chosen at step 1
5. Find a solution by integrating both sides
6. Add side conditions to eliminate constants and to find a unique solution

Example

F = ma

a =
dv

dt
=

d2h

dt2

d2h

dt2
= −g

v(t) =
dh

dt
= −

∫
gdt = −gt+ c1

h(t) =

∫
v(t)dt = −1

2
gt2 + c1t+ c2

h(0) = 1, v(0) = 0

h(t) = −1

2
gt2 + 1

1.2 Population Models

Given some internal and external conditions: dp
dt

= growth rate - death rate

Death rate = 0
dp
dt

= k1p, where p(0) = p0, and k1 > 0 is the proportionality factor for the growth rate

1

p
dp = kdt

ln p = kt+ C

p(t) = Cekt

1.3 Malthusian and competitors

A Malthusian model is a general model for population with rates k1 and k2 proportional
to p
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1 MATHEMATICAL MODELLING & DIRECTION FIELD

We can consider more factors to the death rate, called competitors, with two-party
interactions modelled by p(p−1)

2

dp
dt

= k1p− k3
p(p−1)

2

We can rearrange the terms to find an equation in the form of a logistic model

dp
dt

= −k3
2

(
p2 −

(
q + 2k1

k3

)
p
)

which takes the form
dp
dt

= −Ap(p− p1), where A = k3
2

and p1 = 1 + 2k1
k3

1.4 Direction Fields

For dp
dt

= p(2− p), dp
dt

> 0 ⇔ 0 < p(t) < 2

p = 0, 2 are equilibria
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2 TERMINOLOGY & CLASSIFICATION OF DIFFERENTIAL EQUATIONS

2 Terminology & classification of differential equations

A differential equation is an equation involving an independent variable (e.g., x, t), a
dependent variable, and derivatives of the dependent variables

2.1 Examples

y′ = y + x, y is dependent and x is independent
∂u
∂x

+ ∂u
∂y

= x− 2y, where x, y and independent and the function u(x, y) is dependent

2.2 Types of differential equations

A differential equation with derivatives with respect to one variable is an ODE

A differential equation with partial derivatives with respect to two or more variables is a
PDE

2.3 Ordinary differential equations

The general form of an ODE is given by F (x, y, y′, . . . , y(n)) = 0

The order of a differential equation is the order of the highest derivative appearing in the
equation

An ODE is linear if: 1. y, y′, y′′, . . . appear only to the first power 2. No product like yy′

exist 3. Coefficients ai(x) can be constants or functions of x, but not of y

A linear ODE of order n has the form: an(x)y(n) d
ny

dxn +an−1(x)
dn−1y
dxn−1 + · · ·+a1x

dy
dx
+a0(x)y =

f(x)

2.4 Confirming a solution of an ODE

A function ϕ(x) is a solution of an n-th order ODE on some interval I = (a, b) if 1. ϕ is
n-times differentiable on I 2. It satisfies the ODE for every x ∈ I

Consider y′′ + 2
x2y = 0 and the function ϕ(x) = x2 − 1

x

We can confirm that its derivatives are continuous for all x ̸= 0 and satisfy the ODE

Thus, the function ϕ is a solution of the given ODE in (0,∞)

2.4.1 Superposition principle for linear ODEs

Say we have an n-th order linear homogeneous ODE an(x)y
(n) dny

dxn + an−1(x)
dn−1y
dxn−1 + · · ·+

a1x
dy
dx

+ a0(x)y = 0 and suppose ϕ1(x), ϕ2(x), . . . , ϕk(x) are solutions.

The theorem says any linear combination ϕ(x) = c1ϕ1(x) + c2ϕ2(x) + · · ·+ ckϕk(x) is also
a solution in I for any choice of arbitrary constants, and the set of solutions is closed
under linear combinations

These ϕk(x) solutions, unlike the next example, form a vector space, closed under linear
combinations
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2 TERMINOLOGY & CLASSIFICATION OF DIFFERENTIAL EQUATIONS

Now, consider a non-homogeneous ODE when f(x) ̸= 0, the linear combination property
fails, and only holds in the homogeneous case
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3 INITIAL VALUE PROBLEMS AND THE EXISTENCE AND UNIQUENESS
THEOREM FOR 1ST ORDER ODES

3 Initial value problems and the Existence and Unique-
ness Theorem for 1st order ODEs

Given the n-th order ODE F (x, y, y′, . . . , y(n)) = 0 in some interval I, the following two
side conditions can be appended to the equation

1. Initial Conditions: dependent variable and all its derivatives up to order n− 1
are specified at the same point x0 ∈ I

2. Boundary Conditions: only applicable to PDEs

The problem of finding a solution to an ODE in an interval I containing x0 and such that
the initial conditions are satisfied is called initial boundary value problem (IVP)

3.1 Solving ODEs from implicit relations (template)

Example: given the implicit relation x2 + y2 = 1, x ∈ (−1, 1), we want to see if y(x) is a
solution to the ODE y′ = −x

y

1. Differentiate w.r.t. dependent variable

2x+ 2yy′ = 0

2. Solve for y′

y′ = −x
y
, this is the ODE

3. Solve implicit relation explicitly

Rearrange for y: y(x) = ±
√
1− x2

4. Verify candidates

For y(x) = +
√
1− x2, y′ = −x√

1−x2 , which matches the original ODE For y(x) = −
√
1− x2,

y′ = x√
1−x2 , which also satisfies the ODE

5. Apply initial conditions

y1(x) = −
√
1− x2 ⇒ y1(0) = −1 is not valid y2(x) =

√
1− x2 ⇒ y2(0) = 1 is valid

∴ the unique solution to the IVP is y(x) =
√
1− x2

3.2 Theorem: Existence and Uniqueness of Solutions to the 1st
order IVP, or Picard-Lindelof, or Cauchy-Lipshitz

Consider the IVP y′ = f(x, y) and y(x0) = y0

If f and ∂f
∂y

are continuous in some rectangle R = {(x, y) ∈ R2 : a < x < b, c < y < d}, that
contains the point (x0, y0), then the IVP admits a unique solutions ϕ : (x0−δ, x0+δ) → R
for some δ > 0

If f(x, y) is continuous, then at least one solution exists. Continuity of f is enough for
existence, but not for uniqueness

If f(x, y) is continuous and ∂f
∂y

is continuous, then this is enough to show that uniqueness
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3 INITIAL VALUE PROBLEMS AND THE EXISTENCE AND UNIQUENESS
THEOREM FOR 1ST ORDER ODES

Intuition:

In the original equation, this of it like a slope field that tells you the slope of the solution
curve at each point (x, y), f(x, y)

If f is continuous, there are no gaps in the slope field. That means you can follow the
slope arrows starting at origin to trace out a path

If ∂f
∂y

is also continuous, then nearby paths cannot cross each other. Because the slope
field is well defined, you cannot have two different marbles starting at the same point and
taking different paths

The rectangle R is the safe zone where f behaves nicely

δ is how far you can move horizontally from x0 while staying inside the safe zone

Inside (x0− δ, x0+ δ), the slope field is well-behaved enough to guarantee a single, smooth
solution curve
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4 INITIAL VALUE PROBLEMS AND THE EXISTENCE AND UNIQUENESS
THEOREM FOR 1ST ORDER ODES (CONT.)

4 Initial value problems and the Existence and Unique-
ness Theorem for 1st order ODEs (cont.)

If one of uniqueness or existence fails, then ϕ(x) is not a solution to the ODE

4.1 Uniqueness fails

In f(x, y) = y
x
, f is undefined at (0, 0), but solutions y(x) = 0 and y(x) = x hold and

satisfy the IVP with y(0) = 0, thus y(x) = cx is a solution for any constant c

This means that there are infinitely many solutions, so uniqueness fails

4.2 Existence fails

Now suppose y(0) = 1, when x = 0 this gives y(0) = 0, so existence fails

4.3 Alternate form

Given a 1st order linear ODE a1(x)y
′ + a0(x)y = f(x), we can always put it in the form

y′(x) = P (x)y +Q(x) by denoting P (x) = −a0(x)
a1(x)

, Q(x) = f(x)
a1(x)

Thus, if (x0, y0) ∈ {(x, y) : P (x) and Q(x) are continuous}

Moreover, I can be chosen as the largest interval containing x0 and such that P,Q are
both continuous on I, giving a global, not local, solution

4.4 Picard Iterations

Picard iterations are a method to actually construct the solution that the Existence and
Uniqueness Theorem guarantees.

We start at step 0, and iterate integration to construct a sequence of approximations (one
per step) that should converge to the unique solution of the IVP

We can rewrite an IVP as an integral equation:

y′ = f(x, y), y(x) = y0 +
∫ x

x0
f(t, yn(t))dt, where we don’t know y(t)

We can approximate y(x) step by step:
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4 INITIAL VALUE PROBLEMS AND THE EXISTENCE AND UNIQUENESS
THEOREM FOR 1ST ORDER ODES (CONT.)

If, at some step of the Picard iteration, the new approximation ϕk+1(x) turns out to be
exactly the same as the previous one ϕk(x), then we’ve already reached the solution

Formally, if there exists k ∈ N s.t. ϕk+1(x) = ϕk(x), then the solution would be given by
ϕk(x) = y0 +

∫ x

x0
f(s, ϕk(s))ds

Example:

y′ = 2t(1 + y), y(0) = 0

Step 0: ϕ0(t) = 0

Step 1: y′(0) = 2t, ϕ1(t) =
∫ t

0
2sds = t2

Step 2: ϕ2(t) =
∫ t

0
2s(1 + t2)ds = t2 + t4

2

Step 3: ϕ3(t) =
∫ t

0
2s

(
1 + t2 + t4

2

)
ds = t2 + t4

2
+ t6

2∗3

Step n: ϕn(t) = t2 + t4

2!
+ t6

3!
+ · · ·+ t2n

n!
= Σn

k=1
t2k

k!

Hence, the sequence of functions converges if and only if the infinites series given above
converges.

We can apply the ratio test to find this:
|t2(k+1)

(k+1)!
k!

k+1
| → 0 as k → ∞

So, the series converges for every t, and ϕ(t) = Σ∞
k=1

t2k

k!
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5 SEPARABLE EQUATIONS

5 Separable Equations

5.1 Definitions

General solution: The family of all possible solutions to the ODE, usually containing
arbitrary constants

Explicit solution: A solution where the dependent variable (say y) is written explicitly
as a function of the independent variable (say x)

Implicit solution: A solution where the relationship between x and y is given as an
equation but not solved explicitly for y

5.2 Solutions of some ODEs

A linear ODE with constant coefficients has the form y′ = ay + b, where a and b are real
constants

We can rewrite this ODE in the equivalent form
1

y+ b
a

dy
dt

= a

By integrating both sides with respect to t, we get

ln |y + b
a
| = t + C ⇔ |y + b

a
| = eCeat ⇔ y(t) = − b

a
± ceat, where C and c are arbitrary

constants

The general solution of an ODE determines an infinite family of curves called integral
curves, where each curve corresponds to a different value of c. Imposing the initial
condition, we are selecting the unique curve that passes through the initial point (t0, y0)

Example

Consider the classic drag proportional to velocity first-order linear ODE mdv
dt

= mg − γv

Put in standard form
dv
dt

= − γ
m
v + g

Rewrite into an equivalent form given
1

y+ b
a

dy
dt

= a, where a = − γ
m
, b = g

The general solution has the form v(t) = − b
a
+ Ceat

Plug back in

v(t) = mg
γ

+ Ce−(γ/m)t, where C is an arbitrary constant

Fix C with an initial condition

v(0) = v0 v0 =
mg
γ

+ C ⇒ C = v0 − mg
γ

Explicit solution by plugging back C

v(t) = mg
γ

+
(
v0 − mg

γ

)
e−γt/m

11



5 SEPARABLE EQUATIONS

5.3 Separable equations

We were able to solve the previous ODE because we were able to rewrite it in an equivalent
form by separating the variables, thus the ODE falls in the class of separable equations

Definition: Consider the 1st order ODE y′ = f(x, y), if f(x) = g(x)p(x), where g and p
depends only on x and y, respectively, then the ODE is said to be separable

Consider the separable ODE on some interval I = (a, b) dy
dx

= g(x)p(y) (∗)

We have two cases:

1. If p(y) ≡ 0, then y(x) = c constant function on I because the RHS is always 0

2. If p(y) ̸= 0, then (∗) can be rewritten as 1
p(y)

dy
dx

= g(x)

Let H = H(y) and G = G(x) be the antiderivatives of 1
p(y)

and g(x), respectively, from
the chain rule we obtain dH(y(x))

dx
= dH

dy
dy
dx

= 1
p(y)

dy
dx

= dG
dx

Then, since their derivatives are equal, the functions must differ by a constant: H(y(x)) =
G(x) + c ⇔

∫
1

p(y)
dy =

∫
g(x)dx+ c

This is an implicit formula for the solution to the ODE.

For an explicit solution, we apply the inverse function of H to both sides: H(y) =
G(x) + C H−1(H(y)) = H−1(G(x) + C) y = H−1(G(x) + C)

Remark: finding the inverse function depends on H
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6 SEPARABLE EQUATIONS (CONT.)

6 Separable Equations (cont.)

6.1 Example (implicit solution)

Consider y′ = x
y exp(x+2y)

It can be rewritten as

ye2yy′ = xe−x

It can then be separated and integrated∫
ye2ydy =

∫
xe−xdy

1
2
ye2y − 1

4
e2y = −(x+ 1)e−x ⇔ e2y(2y − 1) = −4e−x(x+ 1) + c

In this case, it is not possible to write y as an explicit function of x. We stop at an
implicit solution

6.2 Example (explicit solution)

y′ = (1 + y2) tanx

It can be rewritten as
1

1+y2
dy
dx

= tanx

It can then be separated and integrated∫
1

1+y2
dy =

∫
tan xdx ⇔ arctan[y(x)] = − ln | cos x|+ c

Integration of tan x∫
tan xdx =

∫
sinx
cosx

dx = −
∫

1
u
du where u = cos x and du = − sinxdx

−
∫

1
u
du = − ln |u|+ C = − ln | cos x|+ C

13



7 VARIABLE COEFFICIENTS (INTEGRATION FACTOR METHOD)

7 Variable Coefficients (Integration Factor Method)

Consider a 1st order linear ODE with variable coefficients

a1(x)y
′ + a0(x)y = b(x) ⇔ y′ + a0(x)

a1(x)
y = b(x)

a1(x)
⇔ dy

dx
+ P (x)y = Q(x)

If a0(x) = a′1(x), then the equation becomes d
dx
(a1(x))y = b(x)

Definition: An integrating factor is a special function that we multiply through a first-
order linear ODE to make it easier to solve. Its purpose is to turn the left-hand side of
the equation into the derivative of a product, so we can integrate directly

7.1 General Solution

Let dy
dx

+ P (x)y = Q(x)

1. We multiply through by an integrating factor

µ(x) = e
∫
P (x)dx

2. Multiply the whole equation by µ(x)

µ(x) dy
dx

+ µ(x)P (x)y = µ(x)Q(x) ⇔ d
dx
[µ(x)y] = µ(x)Q(x)

3. Integrate both sides

µ(x)y =
∫
µ(x)Q(x)dx+ C

4. Solve for y(x)

y(x) = 1
µ(x)

(∫
µ(x)Q(x)dx+ C

)
General Solution:

y(x) = e−
∫
P (x)dx

(∫
Q(x)e

∫
P (x)dxdx+ C

)
7.2 Example 1

Consider y′ + y = 1, where P (x) = Q(x) = 1

Integrating factor: e
∫
P (x)dx = ex

Use general solution: y(x) = e−x
(∫

exdx+ c
)

Solve: y(x) = 1 + ce−x

7.3 Example 2

Consider y′ + 3
x
y = 3x− 2, y(1) = 1, where P (x) = 3

x
, Q(x) = 3x− 2

Integrating factor: µ(x) = e3 lnx = x3

Rewrite ODE: d
dx
[µy] = µQ ⇔ d

dx
[x3y(x)] = 3x4 − 2x3

Integrate on both sides: x3y(x) = 3
5
x5 − 2

4
x4

Solve: y(x) = 3
5
x2 − 1

2
x+ c

x3

14



7 VARIABLE COEFFICIENTS (INTEGRATION FACTOR METHOD)

Use initial conditions to find C: y(1) = 1 = 3
5
− 1

2
+ C ⇔ C = 9

10

Final Solution: y(x) = 3
5
x2 − 1

2
x+ 9

10x3

15



8 EXACT EQUATIONS

8 Exact Equations

We start with a first-order ODE: M(x, y) +N(x, y) dy
dx

= 0

which is equivalent to M(x, y)dx+N(x, y)dy = 0

Now, suppose there exists a potential function F (x, y) such that ∂F
∂x

= M(x, y), and
∂F
∂y

= N(x, y)

Then, if F exists, then the ODE is called exact.

Along any solution curve y(x), if we compute the derivative of F (x, y(x)), we get:
d
dx
F (x, y(x)) = ∂F

∂x
+ ∂F

∂y
dy
dx

But notice that the right-hand side is exactly the same as M(x, y) +N(x, y) dy
dx

Since our ODE says that equals zero, it follows that d
dx
F (x, y(x)) = 0

That means F (x, y) is constant along solution curves, i.e. F (x, y) = c, which is the implicit
solution of the ODE

8.1 Example 1

Consider y′ = −2xy2+1
2x2y

, where we can rearrange to get M(x, y) = 2xy2 − 1 and N(x, y) =

2x2y

Integrate an equation wrt x:∫
(2xy2 − 1)dx = x2y2 − x+ g(y)

The last term g(y) appears instead of constant c because c can depend on y since we are
integrating wrt x

Now, differentiate the latter function wrt y:
∂F
∂y

= 2x2y + g′(y) = 2x2y, where the last term appears from N(x, y) = 2x2y

We see that g′(y) = 0, so g(y) = c. Therefore, the given ODE is exact and the general
solution is implicitly defined by x2y2 − x = c for any arbitrary constant c

8.2 Example 2

Consider 3xy + y2 + (x2 + xy)y′ = 0

Integrate M(x, y) wrt x: F (x, y) = 3
2
x2y + xy2 + g(y)

Differentiate F wrt y: ∂F
∂y

= 3
2
x2 + 2xy + g′(y) = x2 + xy

Rearrange for g′(y) : g′(y) = −1
2
x2 − xy, which cannot hold because the RHS depends on

both variables x and y, while g is only a function of y. Hence, there is no F satisfying for
the given ODE, which is then not exact

16



8 EXACT EQUATIONS

8.3 Clairaut’s Theorem (Test for exactness)

An ODE is exact in R if and only if ∂M
∂y

= ∂N
∂x

for all (x, y) ∈ R

Get {
∂F
∂y

= N(x, y)
∂F
∂x

= M(x, y)

Since M and N are differentiable wrt x and y, then

{
∂2F
∂x∂y

= ∂N
∂x

∂2F
∂y∂x

= ∂M
∂y

Clairaut’s Theorem states that if F (x, y) has continuous second order partial derivatives,
then ∂2F

∂x∂y
= ∂2F

∂y∂x

Therefore, ∂M
∂y

= ∂N
∂x

for all (x, y) ∈ R

17



9 SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

9 Second order linear differential equations

CREATE CHEAT SHEET TO SOLVE 1ST ORDER ODES

Let a2(x)y
′′ + a1(x)y

′ + a0(x)y = b(x), where the coefficients are functions of x only and
are continuous on some open interval I = (a, b)

If the ODE = 0, we call it homogeneous.

The superposition principle also applies to second order ODEs.

9.1 Wronskian

A second order ODE needs two initial conditions, and they must not be multiples of one
another. Else, solutions y1, y2 are linearly dependent on the interval I

We can say that a 2nd order ODE is homogeneous if:

Let y1, y2 be solutions on the interval of a2(x)y′′ + a1(x)y
′ + a0(x)y = 0. If at some point

x0 ∈ (a, b) these two solutions satisfy

dety1(x0) y2(x0)
y′1(x0) y′2(x0)

̸= 0

and call it Wronskian of y1 and y2 at x0

9.2 Representation Theorem

Let y1(x), y2(x) be two solutions on the interval (a, b) of a2(x)y′′ + a1(x)y
′ + a0(x)y = 0

If at some x0 ∈ (a, b), these two solutions satisfy: W [y1(x0), y2(x0)] ̸= 0, then y1(x) and
y2(x) are linearly independent solutions on (a, b)

18



10 HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS

10 Homogeneous equations with constant coefficients

Consider ay′′ + by′ + cy = 0, where a, b, c ∈ R

If ϕ(x) is a solution to the ODE, then ϕ′′(x) = − b
a
ϕ′(x)− c

a
ϕ(x) for all x ∈ R

This means that the second derivative is a linear combination of the lower order derivatives

If we have a trial function (educated guess for the solution) y(x) = erx, then we get
y′(x) = rerx and y′′(x) = r2erx

Into the ODE, we get ��erx(ar2 + br + c) = 0, so erx is a solution ⇔ r is a root of the 2nd
order polynomial. Thus, r must be a solution to the characteristic equation ar2+br+c = 0

10.1 Case 1: b2 − 4ac > 0

If so, then there exists roots r1, r2 ∈ R with r1 ̸= r2

r1 cannot equal r2 because W [er1x, er2x] = (r2 − r1)e
(r1+r2)x ̸= 0

Hence, y1(x) = er1x and y2(x) = er2x are linearly independent solutions, and by the
Representation Theorem, y(x) = c1e

r1x + c2e
r2x, where constants are arbitrary and can be

found by imposing initial conditions

Example:

Consider 2y′′ + 7y′ − 4y = 0

Characteristic equation: 2r2 + 7r − 4 = 0

Confirm determinant > 0: r1,2 =
−7±

√
49+32
4

= −4, 1
2

General solution: y(x) = c1e
−4x + c2e

x/2

Impose initial conditions if given

10.2 Case 3: b2 − 4ac < 0

In this case, we have two roots r1,2 =
−b±

√
b2−4ac
2a

= − b
2a

± i
√
4ac−b2

2a
=: α± iβ

Hence, we find two complex-valued linearly independent solutions y1, y2 : R → C y1(x) =
exp[(α+ iβ)x], y2(x) = exp[(α− iβ)x]

We would like to find two real-valued linearly independent solutions

Important:

Euler’s formula: eiθ = cos θ + i sin θ

cos θ = eiθ+e−iθ

2
and sin θ = eiθ−e−iθ

2i

Also, if the ODE has real coefficients and the complex-valued function ϕ = u(x) + iv(x)
is a solution, then real-valued function u(x) = Re(ϕ(x)) and complex-valued function
v(x) = Im(ϕ(x)) are solutions of the same equation

Back to Case 3, from Euler’s formula we get: y1,2(x) = eαx[cos(βx)± i sin(βx)]
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10 HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS

Also, be the second remark above, we can conclude that also the functions below are
also solutions: Y1, Y2 : R → R Y1(x) = Re(y1(x)) = Re(y2(x)) = eαx cos(βx) and
Y2(x) = Im(y1(x)) = −Im(y2(x)) = eαx sin(βx)

Moreover, we can check if these are linearly independent via their Wronskian:

Thus, the solutions above are linearly independent (real-valued) solutions of ay′′2 + by′2 +
cy2 = 0

Moreover, every other solution takes the form y(x) = c1Y1(x) + c2Y2(x) = eαx(c1 cos(βx) +
c2 sin(βx))

Example:

Consider y′′ − y′ + y = 0, y(0) = 1, y′(0) = −2

Characteristic equation r2 − r + 1 = 0

Solution: r1,2 =
1
2
± i

√
3
2

Imposing initial conditions, we get

y(x) = ex/2
[
cos

(√
3
2
x
)
− 5

√
3

3
sin

(√
3
2
x
)]
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11 HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS (CONT.)

11 Homogeneous equations with constant coefficients
(cont.)

11.1 Case 2: b2 − 4ac = 0

If so, then there exist two roots r1, r2 ∈ R with r1 = r2

In this case c = b2

4a
and roots r1 = r2 = − b

2a
. Because we essentially have one root, then

the solution y1(x) = exp
(
− b

2a
x
)

exists

By the Representation Theorem, y(x) = c1y1(x) + c2y2(x). Now that we have y1(x), how
do we find y2(x) such that y2(x)

y1(x)
̸= constant

We use the Method of Reduction of Order, which works on second order linear homogeneous
ODEs with variable coefficients y′′ + p(x)y′ + q(x)y = 0

If ϕ1(x) is a solution to the ODE above, and we want to find ϕ2(x) such that they are
linear independent on an interval, we want ϕ2(x) = g(x)ϕ1(x) where g(x) is an unknown
function to be found to such that the ODE is satisfied by ϕ2(x)

Take ϕ2(x) and take the second derivative: ϕ′′
2 = g′;ϕ1(x) + 2g′ϕ′

1 + gϕ′′
1(x)

Replacing in the ODE, we get ⇔ ϕ1v
′ + (2ϕ′

1 + p(x)ϕ1)v = 0, where v(x) := g′(x)

We can then solve for v(x) because the corresponding ODE is linear and separable

g(x) =
∫
v(x)dx =

∫ exp(−
∫
p(x)dx)

ϕ2
1(x)

dx

Example:

Find a second solution to x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0 for x > 0 given a solution

y1(x) = x−1/2 sin x

Let y2(x) = v(x)y1(x), then y′′2 = v′′y1 + 2v′y′1 + vy′′1

Goal: find v(x). Replacing the latter in the ODE, we find that

x2y1v
′′ + v′(2x2y′1 + xy1) = 0 because the y term is the same as the ODE, and it drops out

We can divide further by x2y1: v′′ +
(
2
y′1
y1

+ 1
x

)
= 0

Now we need y′1
y1

. Since y′1(x) =
√
x cosx− sin x

2
√
x

x
, then the former is cosx

sinx
− 1

2x
, which can be

simplified to 2 cosx
sinx

Subbing back, we get that v(x) has to satisfy the following equation v′′ + 2 cosx
sinx

v′ = 0

Reduce order again: Setting w(x) := v′(x), then w′ = −2 cosx
sinx

w ⇒ w′

w
= −2 cot x

Integrate: ln |w| = −2 ln(sin x) + C, w = v′(x) = C1

sin2 x

Integrating to get v(x): v(x) = −C1 cot x+ C2

Build the solution: y2(x) = v(x)y1(x) = (−C1 cot x+ C2)
sinx√

x
⇒ y2(x) =

cosx√
x
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12 MECHANICAL AND ELECTRICAL VIBRATIONS

12 Mechanical and electrical vibrations

A damped mass-spring oscillator is a physical system constituted by a mass m attached
to an elastic spring with stiffness constant k and subject to friction Ff (t) = −γ dy

dt
, where

γ ≥ 0 is the damping coefficient

The equation of motion is given by my′′ + γy′ + ky = F (t) = 0 with no external force
applied to the body

1. If γ ̸= 0 and γ2 − 4mk ≥ 0, the system is said to be overdamped

r1, r2 > 0, y → 0, x → ∞

r1 = 0, r2 < 0, |y| → ∞, x → ∞

2. If γ ̸= 0 and γ2 − 4mk < 0, the system is said to be underdamped

α > 0, |y| → ∞, y oscillates to ∞, x → ∞

α < 0, |y| → 0, y oscillates to 0, x → ∞

α = 0, y is periodic, no limit

3. If γ = 0, the system is said to be undamped

r1 > 0, |y| → ∞ exponentially. x → ∞

r1 < 0, y → 0, x → ∞

r1 = 0, |y| → ∞ linearly. x → ∞
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13 SECOND ORDER LINEAR NONHOMOGENEOUS EQUATIONS

13 Second order linear nonhomogeneous equations

Consider the IVP y′′ + p(x)y′ + q(x)y = f(x), y(x0) = Y0, y
′(x0) = Y1

This IVP can be proved with the existence and uniqueness theorem, and an interval
I = (a, b) can be found

Furthermore, the superposition principle applies, where solutions ϕ1 and ϕ2 forms another
solution ϕ(x) = c1ϕ1 + c2ϕ2, which solves for y′′ + p(x)y′ + q(x)y = c1f1(x) + c2f2(x)

13.1 Particular Solutions

Let yc(x) = c1y1(x) + c2y2(x) be a solution to a homogeneous equation, and yp(x) be a
solution of the nonhomogeneous equation

Then, y(x) = yc(x) + yp(x) = c1y1(x) + c2y2(x) + yp(x)

The solution yc(x) is called the complementary solution, whereas the solution yp(x) is
called the particular solution

13.2 Method of Undetermined Coefficients

Considering a nonhomogeneous ODE, find yp(x)

Example: y′′ − 3y′ − 4y = 3e2x

Take the homogeneous version and find roots r1 = 4, r2 = −1

Find the complementary solution by looking for a function of the form yp(x) = Ae2x

Plug in for y, get derivatives, and get A = −1
2

General solution: y(x) = yc(x) + yp(x) = c1e
4x + c2e

−x − 1
2
e2x

Example: y′′ − 3y′ − 4y = 2 sin x

We complementary homogeneous solution is yc(x) = c1e
4x + c2e

−x

A solution to the nonhomogeneous solution can be guessed by yp(x) = A cos x+B sin x

We always use both sine and cosine terms for a right side like sin x or cos x
because their derivatives produce each other

We then plug in the derivatives and equate coefficients{
cosine: − 5A− 3B = 0

sine: 3A− 5B − 2 = 0

We can solve for A,B and get a general solution: y(x) = c1e
4x + c2e

−x + 3
17
cos x− 5

17
sin x

Example: y′′ − 3y′ − 4y = 4x2 − 1

yc(x) = c1e
4x + c2e

−x

For a polynomial right hand side, we try a particular solution of the same order (Ax2 +
Bx+ C)
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13 SECOND ORDER LINEAR NONHOMOGENEOUS EQUATIONS

We then plug in the derivatives and equate coefficients


x squared: 2A− 3B − 4C + 1 = 0

x: −6A− 4B = 0

constant: A+ 1 = 0

24



14 THE PHENOMENON OF RESONANCE

14 The phenomenon of resonance

Consider the undamped mass-spring oscillator

General ODE:

y′′ + ω2y = F0 cos(γt), ω2 =
k

m

• ω: Natural frequency (system’s own oscillation)
• γ: Forcing frequency (external input)

General Solution (Non-Resonant):

y(t) = c1 cos(ωt) + c2 sin(ωt) + yp(t)

Try particular solution:

yp(t) = A cos(γt) +B sin(γt)

After differentiating and substituting:

A(ω2 − γ2) cos(γt) +B(ω2 − γ2) sin(γt) = F0 cos(γt)

So:

A =
F0

ω2 − γ2
, B = 0

Final non-resonant solution (for ω ̸= γ):

y(t) = c1 cos(ωt) + c2 sin(ωt) +
F0

ω2 − γ2
cos(γt)
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14 THE PHENOMENON OF RESONANCE

14.1 Resonance and Generalization

Resonance occurs when ω = γ, i.e., the forcing matches the system’s own frequency.
This breaks the usual method since the input matches a homogeneous solution.

• General principle: When the forcing function is also a solution of the homogeneous
equation, multiply your usual particular solution guess by t for linear independence.

• For resonance (ω = γ), trial:

yp(t) = [A cos(ωt) +B sin(ωt)]t

Solving gives:

A = 0, B =
F0

2ω

So the resonance particular solution is:

yp(t) =
F0

2ω
t sin(ωt)

14.2 Examples

Example: y′′ − 3y′ − 4y = −8e−x

yc(x) = c1e
4x + c2e

−x

Notice the forcing term f(x) = −8e−x is a constant multiple of c2e−x, thus we need a
particular solution of the form Axe−x

We then plug in the derivatives and get the general solution y(x) = c1e
4x + c2e

−x + 8
5
xe−x

Example: y′′ − 2y′ + y = (x+ 1)ex

yc(x) = (c1 + c2x)e
x
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14 THE PHENOMENON OF RESONANCE

If we plug in the RHS, the DE will equal 0

Then, we look for a particular solution of the form yp(x) = x2(Ax+B)ex

Example: 2y′′ + 3y′ + y = x2 + 3 sinx

In this case, we can develop a particular solution from the superposition principle because
the forcing term is an addition: f(x) = x2 + 3 sinx

Thus yp(x) = yp,1(x) + yp,2(x), where the former is a particular solution to ODE = x2 and
the latter is a particular solution to ODE = 3 sin x
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15 METHOD OF VARIATION OF PARAMETERS

15 Method of variation of parameters

Find a solution to y′′ + 4y = 3 csc x, but f(x) cannot be expressed as an l.c. of our
common terms from the previous note

We can use variation of parameters, which works for any possible type of forcing term

Consider general form ODE y′′ + a(x)y′ + b(x)y = f(x), and consider the particular
solution of the form yp(x) = v1(x)y1(x) + v2y2(x)

Get y′p = v′1y1 + v1y
′
1 + v′2y2 + v2y

′
2, and assume that v′1y1 + v′2y2 = 0

Then, y′′p = v′1y
′
1 + v1y

′′
1 + v′2y

′
2 + v2y

′′
2

We can impose that to the ODE and get that yp = v1(x)y1(x) + v2(x)y2(x) is a particular
solution iff v1 and v2 satisfy: {

v′1y1 + v′2y2 = 0

v′1y
′
1 + v′2y

′
2 = f(x)

where W [y1(x), y2(x)] ̸= 0

We then find the following solution of the system: v1(x) =
∫ −f(x)y2(x)

W [y1(x),y2(x)]
dx v2(x) =∫ f(x)y1(x)

W [y1(x),y2(x)]
dx
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16 MAKING A PARTICULAR SOLUTION GUESS FOR SECOND ORDER LINEAR
ODES

16 Making a Particular Solution Guess for Second Or-
der Linear ODEs

Step 1: Write the nonhomogeneous ODE in standard form.

• E.g., y′′ + ay′ + by = f(x)

Step 2: Identify the type of forcing (right-hand side) f(x):

• Polynomial (axn + ): Guess another polynomial of the same degree.
• Exponential (Aekx): Guess yp = Aekx.
• Trig (sin/cos) (A sin(kx), B cos(kx)): Guess yp = A cos(kx) +B sin(kx).
• Products: Multiply the corresponding guesses, e.g. xekx leads to (Ax+B)ekx.

Step 3: Check for overlap with homogeneous solutions (roots of characteristic
equation):

• Find roots (frequencies, exponentials) of the homogeneous equation.
• If your guess matches a homogeneous solution (same root/frequency):

– Multiply your guess by x (or t if variable is time) for linear independence.
– If root has multiplicity n, multiply by xn.

Step 4: Plug your guess into the ODE, solve for coefficients.

• Substitute, collect terms, build a system for unknowns.

16.1 Quick Table

Forcing Function Standard Guess If matches homogeneous?

Axn Polynomial of degree n Multiply by x or higher
Aekx Aekx Multiply by x or higher
A sin(kx), B cos(kx) A sin(kx) +B cos(kx) Multiply by x or higher
xrekx (Axr + ...)ekx Multiply by x, x2

Mnemonic:

• If your guess is wiped out by the homogeneous equation, multiply by x for new
solutions
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17 HOW TO SOLVE AN ODE

17 How to Solve an ODE

17.1 General Setup

ODE form: F (x, y, y′, y′, . . . , y(n) = 0

General solution: Family of solutions with arbitrary constants.

Particular solution: Obtained by applying initial/boundary conditions.

Explicit solution: y = f(x).

Implicit solution: Relation between x and y, not fully solved for y.

17.2 First Order

17.2.1 Separation of Variables

Form: dy
dx

= g(x)p(y)

Steps:

1. Rearrange: 1
p(y)

dy = g(x)dx

2. Integrate both sides

3. Get implicit solution H(y) = G(x) + C

4. Solve for y if possible (explicit solution)

17.2.2 Variable Coefficients

Form: y′ = P (x)y = Q(x)

Steps:

1. Compute integrating factor µ(x) = e
∫
P (x)dx

2. Multiply ODE by µ(x): d
dx
[µ(x)y] = µ(x)Q(x)

3. Integrate both sides: µ(x)y =
∫
µ(x)Q(x)dx+ C

4. Solve for y(x)

17.2.3 Exact Equations

Form: M(x, y) +N(x, y)y′ = 0 or M(x, y)dx+N(x, y)dy = 0

Condition (Clairaut’s Test): ∂M
∂y

= ∂N
∂x

Steps:

1. Check exactness with Clairaut’s test

2. Find potential function F (x, y) such that ∂F
∂x

= M, ∂F
∂y

= N

3. Implicit solution: F (x, y) = C
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17 HOW TO SOLVE AN ODE

17.2.4 Picard Iteration (Approximate Solutions)

Form: For IVP y′ = f(x, y), y(x0) = 0

Steps:

• Rewrite as integral equation y(x) = y0 +
∫ x

x0
f(t, y(t))dt

• Approximate iteratively ϕn+1(x) = y0 +
∫ x

x0
f(t, ϕn(t))dt

• Sequence converges to the solution

17.3 Second Order

We usually deal with linear, constant-coefficient ODEs of the form:

ay′′ + by′ + cy = 0 or more generally y′′ + P (x)y′ +Q(x)y = 0

17.3.1 Characteristic Equation Method (Constant Coefficients)

1. Write characteristic polynomial:

ar2 + br + c = 0

2. Compute discriminant:

∆ = b2 − 4ac

3. Solve according to cases:

Case 1: Two distinct real roots ∆ > 0

• Roots:

r1,2 =
−b±

√
∆

2a

• General solution:

y(x) = c1e
r1x + c2e

r2x

Case 2: Repeated root ∆ = 0

• Root:

r = − b
2a

• General solution:

y(x) = (c1 + c2x)e
rx

• (Alternate derivation: reduction of order — given one solution y1, the second is

y2 = y1(x)
∫ exp!(−

∫
P (x),dx)

y1(x)2
dx

for ODEs in the form (y′′ + P (x)y′ +Q(x) = 0))

Case 3: Complex conjugate roots ∆ < 0

• Roots:

r1,2 = α± iβ, α = − b
2a
, β =

√
4ac−b2

2a
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17 HOW TO SOLVE AN ODE

• General solution:

y(x) = eαx
(
c1 cos(βx) + c2 sin(βx)

)
17.3.2 Nonhomogeneous Equations

For ay′′ + by′ + cy = f(x):

• General solution = Complementary solution (yc) + Particular solution (yp).

1. Solve homogeneous equation → get yc.

2. Guess form of yp (method of undetermined coefficients) or use variation of param-
eters.

• Variation of parameters formula for y′′ + P (x)y′ +Q(x)y = R(x):

yp = u1(x)y1(x) + u2(x)y2(x)

where

u′
1 = −y2(x)R(x)

W (y1,y2)
, u′

2 =
y1(x)R(x)
W (y1,y2)

and W (y1, y2) = y1y
′
2 − y′1y2
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